浅析技术研究微型机械加工技术综述

更新时间:2024-01-23 点赞:18653 浏览:82145 作者:用户投稿原创标记本站原创

【摘要】本文详细介绍了微型机械加工技术的国内外发展现状,分析了微型机械加工的主要方法以及前沿关键技术,最后对其发展方向和前景做了展望。
【关键词】特种加工微型机械
1006-9682(2012)10-0074-02
【Abstract】Domestic and foreign situation of micro mechanical processing technology was introduced in detail in 源于:论文封面www.618jyw.com
the paper. The main methods and the frontier technologies were also analyzed. And finally the direction and prospect were discussed.
【Key words】Non-traditional machiningMicromachine
一、引 言
微型机械加工或称微型机电系统,英文全称为Micro-electromechanical Systems,简称MEMS。它是指可以批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,甚至接口、通讯电路和电源等于一体的微型器件或系统。其主要特点有:体积小(特征尺寸范围为:(1μm~10mm))、重量轻、耗能低、性能稳定;有利于大批量生产,降低生产成本;惯性小、谐振频率高、响应时间短;集约高技术成果,附加值高。微型机械的目的不仅仅在于缩小尺寸和体积,其目标更在于通过微型化、集成化来搜索新原理、新功能的元件和系统,开辟一个新技术领域,形成批量化产业。
微型机械的加工一方面在向三维复杂形状的制作发展,同时在向更高加工精度和极限尺寸领域推进。从加工原理来看,机械加工、化学腐蚀、能量束加工以及扫描隧道显微加工等最终都可能达到纳米级加工精度。但就加工方法而言,微型机械加工将在结合硅微细加工批量制作及与电路集成的思想的基础上,以极限尺寸加工原理和复合工艺手段,得到进一步的开发和完善。

二、国外发展现状

微型机械在国外已受到政府部门、企业界、高等学校与研究机构的高度重视。美国科学家在20世纪80年代末提出“小机器、大机遇。”关于新兴领域—微动力学报告的国家建议书,声称“由于微动力学(微系统)在美国的紧迫性,应在这样一个新的重要技术领域与其他国家的竞争中走在前面”,建议财政预支费用为五年5000万美元,得到美国领导机构重视,并把航空航天、信息和MEMS作为科技发展的三大重点。美国宇航局投资1亿美元着手研制“发现号微型卫星”。
1959年,Richard P Feynman就提出了微型机械的设想。1962年第一个硅微型压力传感器问世,开发出尺寸为50~500μm的齿轮、齿轮泵、气动涡轮及联接件等微机械。1965年,斯坦福大学研制出硅脑电极探针。1987年美国加州大学伯克利分校研制出转子直径为60~12μm的利用硅微型静电机,显示出利用硅微加工工艺制造小可动结构并与集成电路兼容以制造微小系统的潜力。
日本通产省1991年开始启动一项为期10年、耗资250亿日元的微型机械研究计划,研制两台样机。一台用于医疗,进入人体进行诊断和微型手术;另一台用于工业,对飞机发动机和原子能设备的微小裂纹实施维修。该计划有工业大学、早稻田大学等几十家单位参加。
欧洲工业发达国家也相继对微型系统的研究开发进行了重点投资。德国自1988年开始微加工十年计划项目,其首创的LIGA工艺,为MEMS的发展提供了新的技术手段。法国1993年启动的7000万法郎的“微系统与技术”项目。欧共体组成“多功能微系统研究网络NEXUS”,联合协调46个研究所的研究。瑞士在其传统的钟表制造行业和小型精密机械工业的基础上也投入了MEMS的开发工作,1992年投资为1000万美元。
目前已有大量的微型机械或微型系统被研究出来。例如:德国创造了LIGA工艺,制成了悬臂梁、执行机构、微型泵、微型喷嘴以及多种光学器件等。美国加州理工学院在飞机翼面粘上相当数量的1mm的微梁,控制其弯曲角度以影响飞机的空气动力学特性。日本研制的数厘米见方的微型车床可加工精度达

1.5μm的微细轴。

三、国内现状

我国在科技部、国家自然基金委、教育部和总装备部的资助下,积极开展MEMS的研究。广东工业大学与日本筑波大学合作,开展了生物和医用微型机器人的研究,已研制出一维、二维联动压电陶瓷驱动器。其位移范围为10μm×10μm;位移分辨率为 0.01μm,精度为0.1μm,正在研制6自由度微型机器人。
长春光学精密机器研究所研制出直径为Φ3mm的压电电机、电磁电机、微测试仪器和微操作系统;上海冶金研究所研制出了微电机、多晶硅梁结构、微泵与阀;上海交通大学研制出Φ2mm的电磁电机;南开大学开展了微型机器人控制技术的研究等。

四、前沿关键技术

1.微型加工技术

(1)微细电火花加工(Micro EDM)。电火花加工是利用工件和工具电极之间的脉冲性火花放电,产生瞬间高温使工件材料局部熔化和汽化,从而达到蚀除加工的目的。
实现微细电火花加工的关键在于微小轴(工具电极)的在线制作、微小能量放电电源、工具电极的微量伺服进给、加工状态检测与系统控制以及加工工艺方法等。
(2)微细激光成型加工。微细激光成型加工有可加工成型树脂或金属材料的高深宽比三维结构、无需工具或掩模板制作、成型快等特点。但聚焦光斑大小应与扫描间隔匹配,光斑小于扫描间隔时结构易断裂,反之影响成型尺寸精度。
(3)微细机械加工。机械切削加工由于切削力的产生一般认为不适合微型机械的加工制作。但超精密加工已成功制作出尺寸在10~100μm的微小三维构件。机械加工出的三维微小构件与压电薄膜的热液制作结合,试制出了振动陀螺结构。超精密切削加工可望适合三维复杂形状的微小构件制作。(4)扫描探针显微镜(SPM)加工。应用SPM技术,可利用接近实验材料表面的探针尖端的高电场,切断原子间的结合并蒸发掉原子,进行单个原子的去除、添加和移动。
通常SPM加工明显的缺点是加工区域和速度太小。电化学加工和光刻加工与SPM加工的结合可有效地解决这一问题。

2.关键技术

微型机械加工技术是微型机械发展的关键基础技术,其前沿关键技术包括:
(1)微系统设计技术。主要是微结构设计数据库、有限元和边界分析、CAD/CAM仿真和拟实技术、微系统建模等,微小型化的尺寸效应和微小型理论基础研究也是设计研究不可缺少的课题,如力的尺寸效应、微结构表面效应、微观摩擦机理、热传导、误差效应和微构件材料性能等。
(2)微细加工技术。主要指高深度比多层微结构的硅表面加工和体加工技术,利用X射线光刻、电铸的LIGA和利用紫外线的准LIGA加工技术;微结构特种精密加工技术包括微火花加工、能束加工、立体光刻成形加工;特殊材料特别是功能材料微结构的加工技术;多种加工方法的结合;微系统的集成技术;微细加工新工艺探索等。
(3)微型机械组装和封装技术。主要指沾接材料的粘接、硅玻璃静电封接、硅硅键合技术和自对准组装技术,具有三维可动部件的封装技术、真空封装技术等新封装技术的探索。
(4)微系统的表征和测试技术。主要有结构材料特性测试技术,微小力学、电学等物理量的测量技术,微型器件和微型系统性能的表征和测试技术,微型系统动态特性测试技术,微型器件和微型系统可靠性的测量与评价技术。

五、微型机械加工技术发展趋势

微型机械加工技术是微型机械技术领域的一个非常重要而又非常活跃的源于:硕士毕业论文www.618jyw.com
技术领域,其发展不仅可带动许多相关学科的发展,更是与国家科技发展、经济和国防建设息息相关。微型机械加工技术是一门交叉科学,随着微电子学、材料学、信息学等的不断发展,微型机械具备了更好的发展基础。新原理、新功能、新结构体系的微传感器、微执行器和系统将不断出现,并可嵌入大的机械设备,从而提高自动化和智能水平。
微型机械加工技术作为微型机械的最关键技术,也必将有广阔的发展前景。硅加工、LIGA加工和准LIGA加工正向着更复杂、更高深度、适合各种要求的材料特性和表面特性的微结构以及制作不同材料特别是功能材料微结构更易于与电路集成的方向发展,多种加工技术结合也是其重要方向。微型机械在设计方面正向着进行结构和工艺设计的同时实现器件和系统的特性分析和评价的设计系统的实现方向发展,引入虚拟现实技术。
参考文献
1 吴敏镜.微机械技术的兴起及其制造[J].机械工艺师,1998(7):37~39
2 唐一平.先进制造技术[M].北京:科学出版社,2000
3 张志焜、崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2001
4 蔡安江、李明贵.工程实践基础[M].北京:兵器工业出版社,2003
5 张珂.微机械的制造技术及应用[J].机械制造,1999(8):20~21
相关文章
推荐阅读

 发表评论

共有3000条评论 快来参与吧~